Winslow Township School District

Mathematics Curriculum - Geometry
Unit 2

Overview	Standards for Mathematical Content	Unit Focus	Standards for Mathematical Practice
Unit 2 Congruence, Similarity \& Proof	\bullet G.SRT.A. 1 \bullet G.CO.C. 10 \bullet G.SRT.A. 2 \bullet G.CO.C. 11 \bullet G.SRT.A. 3 \bullet G.SRT.B. 4 \bullet G.CO.C. 9 \bullet G.SRT.B. 5	- Understand similarity in terms of similarity transformations - Prove geometric theorems. - Prove theorems involving similarity	MP. 1 Make sense of problems and persevere in solving them. MP. 2 Reason abstractly and quantitatively.
Unit 2: Suggested Open Educational Resources	G.SRT.A. 1 Dilating a Line G.SRT.A. 2 Are They Similar? G.SRT.A. 2 Similar Triangles G.SRT.A. 3 Similar Triangles G.CO.C. 9 Congruent Angles made by parallel lines and a transverse G.CO.C. 9 Points equidistant from two points in the plane	G.CO.C. 10 Midpoints of Triangle Sides G.CO.C. 10 Sum of angles in a triangle G.CO.C. 11 Midpoints of the Sides of a Parallelogram G.CO.C. 11 Is this a parallelogram? G.SRT.B.4 Joining two midpoints of sides of a triangle G.SRT.B. 4 Pythagorean Theorem G.SRT.B. 5 Tangent Line to Two Circles	MP. 3 Construct viable arguments \& critique the reasoning of others. MP. 4 Model with mathematics. MP. 5 Use appropriate tools strategically. MP. 6 Attend to precision. MP. 7 Look for and make use of structure. MP. 8 Look for and express regularity in repeated reasoning.

Winslow Township School District

Mathematics Curriculum - Geometry
Unit 2

Curriculum Unit 2	Standards		Pacing	
			Days	Unit Days
Unit 2 Congruence, Similarity \& Proof	$\begin{array}{ll}\text { - } & \text { G.CO.C. } 9 \\ \text { - } & \text { G.CO.C. } 10 \\ \text { - } & \text { G.SR.C. } 11 \\ \text { - }\end{array}$	Construct and explain formal proofs of theorems involving lines, angles, triangles, and parallelograms. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.	17	45
	- G.SRT.A. 1 - G.SRT.A. 2 - G.SRT.A. 3 - G.SRT.B. 4	Verify the properties of dilations given by a center and a scale factor. Use the definition of similarity in terms of similarity transformations to decide if two given figures are similar and explain, using similarity transformations, the meaning of triangle similarity. Use the properties of similarity transformations to establish the Angle-Angle criterion for two triangles to be similar. Prove theorems about triangles. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.	23	
		Assessment, Re-teach and Extension	5	

Winslow Township School District

Mathematics Curriculum - Geometry

Unit 2

Unit 2 Geometry		
Content Standards	Suggested Standards for Mathematical Practice	Critical Knowledge \& Skills
- G.SRT.A.1. Verify experimentally the properties of dilations given by a center and a scale factor: G.SRT.A.1a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. G.SRT.A.1b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.	MP. 1 Make sense of problems and persevere in solving them MP. 3 Construct viable arguments and critique the reasoning of others. MP. 5 Use appropriate tools strategically. MP. 8 Look for and express regularity in repeated reasoning.	Concept(s): - Dilation of a line that passes through the center of dilation results in the same line. - Dilation of a line that does not pass through the center of dilation results in a line that is parallel to the original line. - Dilation of a line segment results in a longer line segment when, for scale factor k , $\|\mathrm{k}\|$ is greater than 1 . - Dilation of a line segment results in a shorter line segment when, for scale factor k , $\|\mathrm{k}\|$ is less than 1 . Students are able to: - perform dilations in order to verify the impact of dilations on lines and line segments. Learning Goal 1: Verify the properties of dilations given by a center and a scale factor.
- G.SRT.A.2. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.	MP. 3 Construct viable arguments and critique the reasoning of others. MP. 5 Use appropriate tools strategically. MP. 8 Look for and express regularity in repeated reasoning.	Concept(s): - Similarity transformations are used to determine the similarity of two figures. Students are able to: - given two figures, determine, using transformations, if they are similar. - explain, using similarity transformations, the meaning of similarity for triangles. Learning Goal 2: Use the definition of similarity in terms of similarity transformations to decide if two given figures are similar and explain, using similarity transformations, the meaning of triangle similarity.
- G.SRT.A.3. Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.	MP. 3 Construct viable arguments and critique the reasoning of others. MP. 5 Use appropriate tools strategically. MP. 6 Attend to precision.	Concept(s): - Angle-Angle criterion for similarity Students are able to: - explain Angle-Angle criterion and its relationship to similarity transformations and properties of triangles. Learning Goal 3: Use the properties of similarity transformations to establish the AngleAngle criterion for two triangles to be similar.
- G.CO.C.9. Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent	MP. 3 Construct viable arguments and critique the reasoning of others.	Concept(s): - A formal proof may be represented with a paragraph proof or a two-column proof. Students are able to: - construct and explain proofs of theorems about lines and angles including: - vertical angles are congruent;

Winslow Township School District

Mathematics Curriculum - Geometry

Unit 2
and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.

- G.CO.C.10. Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
- G.CO.C.11. Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.
- G.SRT.B.4. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity
- G.SRT.B.5. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

MP. 6 Attend to precision.

MP. 2 Reason abstractly and quantitatively.

MP. 6 Attend to precision.

- congruence of alternate interior angles;
- congruence of corresponding angles;
- and points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
- construct and explain proofs of theorems about triangles including:
- sum of interior angles of a triangle;
- congruence of base angles of an isosceles triangle;
- the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length;
- and the medians of a triangle meet at a point.
- construct and explain proofs of theorems about parallelograms including:
- opposite sides are congruent;
- opposite angles are congruent;
- the diagonals of a parallelogram bisect each other;
- and rectangles are parallelograms with congruent diagonals.

Learning Goal 4: Construct and explain formal proofs of theorems involving lines, angles, triangles, and parallelograms.

Concept(s): No new concept(s) introduced
Students are able to:

- construct and explain proofs of theorems about triangles including:
- a line parallel to one side of a triangle divides the other two sides proportionally;
- and the Pythagorean Theorem (using triangle similarity)

Learning Goal 5: Prove theorems about triangles.
MP. 7 Look for and make use of \quad Concept(s):

- Corresponding parts of congruent triangles are congruent (CPCTC).

Students are able to:

- prove geometric relationships in figures using criteria for triangle congruence.
- prove geometric relationships in figures using criteria for triangle congruence.
- solve problems using triangle congruence criteria (SSS, ASA, SAS, HL).
- solve problems using triangle similarity criteria (AA).

Learning Goal 6: Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Winslow Township School District

Mathematics Curriculum - Geometry
Unit 2

Unit 2 Geometry	
District/School Formative Assessment Plan	District/School Summative Assessment Plan
Pre-Assessment, Quizzes	Unit Benchmark
Exit Tickets	Linkit! Diagnostic
Daily Monitoring	
Linkit!	

Focus Mathematical Concepts

Common Misconceptions:

- G.SRT.A.1, G.SRT.A.2,G.SRT.A. 3

Some students often do not recognize that congruence is a special case of similarity. Similarity with a scale factor equal to 1 becomes a congruency.
Students may not realize that similarities preserve shape, but not size. Angle measures stay the same, but side lengths change by a constant scale factor.
Students may incorrectly apply the scale factor. For example students will multiply instead of divide with a scale factor that reduces a figure or divide instead of multiply when enlarging a figure.
Some students often do not list the vertices of similar triangles in order. However, the order in which vertices are listed is preferred and especially important for similar triangles so that proportional sides can be correctly identified.

- G.CO.C.9, G.CO.C.10, G.CO.C. 11

Research over the last four decades suggests that student misconceptions about proof abound:

- even after proving a generalization, students believe that exceptions to the generalization might exist;
- one counterexample is not sufficient;
- the converse of a statement is true (parallel lines do not intersect, lines that do not intersect are
parallel); and
- a conjecture is true because it worked in all examples that were explored.

Each of these misconceptions needs to be addressed, both by the ways in which formal proof is taught in geometry and how ideas about "justification" are developed throughout a student's mathematical education.

- G.SRT.B.4, G.SRT.B. 5

Some students often do not recognize that congruence is a special case of similarity. Similarity with a scale factor equal to 1 becomes a congruency.
Students may not realize that similarities preserve shape, but not size. Angle measures stay the same, but side lengths change by a constant scale factor.
Students may incorrectly apply the scale factor. For example students will multiply instead of divide with a scale factor that reduces a figure or divide instead of multiply when enlarging a figure.

Some students often do not list the vertices of similar triangles in order. However, the order in which vertices are listed is preferred and especially important for similar triangles so that proportional sides can be correctly identified.

Winslow Township School District

Mathematics Curriculum - Geometry
Unit 2

District/School Tasks	District/School Primary and Supplementary Resources and Technology Integration
PARCC Released Items http://www.parcc-assessment.org/released-items NJDOE Digital Item Library https://nj.digitalitemlibrary.com/home NJSLA Mathematics Evidence Statements https://docs.google.com/spreadsheets/d/18M5r1jk4P729fTpAlWAzrw1gE6tken233I -Yk0U712M/edit\#gid=554025491 LinkIt! Form A, B, \& C	Textbook IXL https://www.ixl.com/ Khan Academy https://www.khanacademy.org/ HS Flip Book: http://community.ksde.org/Default.aspx?tabid=5646 North Carolina Wikispaces http://maccss.ncdpi.wikispaces.net/ PARCC Educational Resources http://www.parcc-assessment.org/assessments/test-design/mathematics/math-test- specifications-documents Diversity, Equity \& Inclusion Educational Resources https://www.nj.gov/education/standards/dei/
Instructional Best Practices and Exemplars	
1. Identifying similarities and differences 2. Summarizing and note taking 3. Reinforcing effort and providing recognition 4. Homework and practice 5. Nonlinguistic representations	6. Cooperative learning 7. Setting objectives and providing feedback 8. Generating and testing hypotheses 9. Cues, questions, and advance organizers 10. Manage response rate

Winslow Township School District

Mathematics Curriculum - Geometry

Unit 2

Vocabulary			
adjacent angles alternate exterior angles alternate interior angles base angles of an isosceles triangle center of dilation congruent segments	lonsecutive interior angles corresponding angles corresponding parts diagonal dilation endpoints	interior angles line segment median midpoint perpendicular bisector	
proof proportion Pythagorean Theorem theorem vertex angle			
9.4.12.CI.1: Demonstrate the ability to reflect, analyze, and use creative skills and ideas (e.g., 1.1.12prof.CR3a). 9.4.12.TL.3: Analyze the effectiveness of the process and quality of collaborative environments.			
The implementation of the 21st Century skills and standards for students of the Winslow Township District is infused in an interdisciplinary format in a variety of curriculum areas that include, English language Arts, Mathematics, School Guidance, Social Studies, Technology, Visual and Performing Arts, Science, Physical Education and Health, and World Language.: Additional opportunities to address 9.1, 9.2 \& 9.4: Philadelphia Mint https://www.usmint.gov/learn/kids/resources/educational-standards			
Different ways to teach Financial Literacy. https://www.makeuseof.com/tag/10-interactive-financial-websites-teach-kids-money-management-skills/			

Suggested Modifications for Special Education/504

Students with special needs: The students' needs will be addressed on an individual and grade level using a variety of modalities. Accommodations will be made for those students who need extra time to complete assignments. Support staff will be available to aid students related to IEP specifications. 504 accommodations will also be attended to by all instructional leaders. Physical expectations and modifications, alternative assessments, and scaffolding strategies will be used to support this learning. The use of Universal Design for Learning (UDL) will be considered for all students as teaching strategies are considered.
\square Provide the opportunity to re-take tests
\square Modify activities/assignments/projects/assessments
\square Breakdown activities/assignments/projects/assessments into manageable units
\square Additional time to complete activities/assignments/projects/assessments
\square Provide an option for alternative activities/assignments/projects/assessments
\square Modify Content
\square Modify Amount
\square Small Group Intervention/Remediation
\square Individual Intervention/Remediation
\square Additional Support Materials
\square Guided Notes
\square Graphic Organizers
\square Adjust Pacing of Content
\square Increase one on one time
\square Peer Support
\square Other Modifications for Special Education:

Winslow Township School District

Mathematics Curriculum - Geometry

Unit 2

Suggested Modifications for At-Risk Students

Formative and summative data will be used to monitor student success. At first signs of failure, student work will be reviewed to determine support. This may include parent consultation, basic skills review and differentiation strategies. With considerations to UDL, time may be a factor in overcoming developmental considerations
\square Provide the opportunity to re-take tests
\square Increase one on one time
\square Modify Content
\square Modify Amount
\square Oral prompts can be given
\square Adjust Pacing of Content
\square Using visual demonstrations, illustrations, and models
\square Small Group Intervention/Remediation
\square Give directions/instructions verbally and in simple written format
\square Individual Intervention/Remediation
\square Peer Support
\square Additional Support Materials
\square Modify activities/assignments/projects/assessments
\square Guided Notes
\square Additional time to complete activities/assignments/projects/assessments
\square Provide an option for alternative activities/assignments/projects/assessments
\square Graphic Organizers

Suggested for English Language Learners

\square Other Modifications for Students At-Risk:

All WIDA Can Do Descriptors can be found at this link:
https://wida.wisc.edu/teach/can-do/descriptors
\square Grades 9-12 WIDA Can Do Descriptors:
\square Listening \square SpeakingReading \square Writing
\square Oral Language
Students will be provided with accommodations and modifications that may include:

- Relate to and identify commonalities in mathematics studies in student's home country
- Assist with organization
- Use of computer
- Emphasize/highlight key concepts
- Teacher Modeling
- Peer Modeling
- Label Classroom Materials - Word Walls

Suggested Modifications for Gifted Students
Students excelling in mastery of standards will be challenged with complex, high level challenges related to the topic.

- Raise levels of intellectual demands
- Require higher order thinking, communication, and leadership skills
- Differentiate content, process, or product according to student's readiness, interests, and/or learning styles
- Provide higher level texts
- Expand use of open-ended, abstract questions
- Critical and creative thinking activities that provide an emphasis on research and in-depth study
- Enrichment Activities/Project-Based Learning/ Independent Study

Additional Strategies may be located at the links:

* Gifted Programming Standards
* Webb's Depth of Knowledge Levels and/or Revised Bloom's Taxonomy
* REVISED Bloom's Taxonomy Action Verbs

Winslow Township School District

Mathematics Curriculum - Geometry
Unit 2

	Suggested Activities	
\square Do Now/Warm-Up	\square Centers	
\square Whole Group	\square Intervention/Remediation	
\square Small Groups	\square Projects	
\square Guided Practice	\square Academic Games	
\square Independent Practice	\square Other Suggested Activities:	

Interdisciplinary Connections

Big Ideas Real-Life STEM Videos and Performance Tasks

Interdisciplinary Connections: ELA
NJSLSA.R1. Read closely to determine what the text says explicitly and to make logical inferences and relevant connections from it; cite specific textual evidence when writing or speaking to support conclusions drawn from the text.
NJSLSA.W2. Write informative/explanatory texts to examine and convey complex ideas and information clearly and accurately through the effective selection, organization,
and analysis of content
NJSLSA.L1. Demonstrate command of the conventions of standard English grammar and usage when writing or speaking
SL.9-10.4: Present information, findings and supporting evidence clearly, concisely and logically. The content, organization, development and style are appropriate to task, purpose and audience.
NJSLSA.L6: Acquire and use accurately a range of general academic and domain-specific words and phrases sufficient for reading, writing, speaking and listening at the college and career readiness level; demonstrate independence in gathering vocabulary knowledge when encountering an unknown term important to comprehension or expression.

Integration of Computer Science and Design Thinking NJSLS 8
8.1.12.AP.1: Design algorithms to solve computational problems using a combination of original and existing algorithms.
8.1.12.AP.2: Create generalized computational solutions using collections instead of repeatedly using simple variables.
8.1.12.AP.8: Evaluate and refine computational artifacts to make them more usable and accessible.
8.1.12.DA.1: Create interactive data visualizations using software tools to help others better understand real world phenomena, including climate change.
8.2.12.ETW.2: Synthesize and analyze data collected to monitor the effects of a technological product or system on the environment. • 8.2.12.ETW.3: Identify a complex, global environmental or climate change issue, develop a systemic plan of investigation, and propose an innovative sustainable solution.

